c# - Miller-Rabin Primality test fails for large numbers -


after studying other answers related miller-rabin test primality, implemented version in c#, begins fail somewhere in region of 3 billion, , time gets 4 billion, stops recognizing primes. suspect suffering overflow, cannot figure out where. goal work value in range 0 <= n <= 2^63 - 1.

i created fiddle: https://dotnetfiddle.net/3f7p97

among ideas tried were:

  1. using precalculated bases 2, 325, 9375, 28178, 450775, 9780504, 1795265022 advertised working numbers less 2^64 website: http://miller-rabin.appspot.com/ recommended answerer of question: miller rabin primality test accuracy

  2. writing overflow resistant power-mod function computing a^b mod n.

  3. writing overflow resistant multiplication function computing a*b mod n (using russian peasant algorithm).

here code fiddle of time created question:

using system; using system.collections.generic; using system.linq;  // author: paul a. chernoch // // purpose: use rabin-miller algorithm test if numbers prime. // problem: somewhere between 2 billion , 4,194,304,903 stops working , says number not prime. // hypothesis: code should work 64-bit values, suspiciously breaks near maximum value signed 32-bit integer. public class program {     public static void main()     {         // these cases succeed.         (long n = 0; n < 20; n++)         {             testrabinmiller(n);         }          testrabinmiller(2000000011l);         testrabinmiller(2147483647l); // 2^31 - 1 prime.         testrabinmiller(2147483659l); // 2^31 + 11 prime.          // these cases fail! think has overflow on multiplication or something.          testrabinmiller(3042000007l); // succeeds, fails         testrabinmiller(3043000003l); // succeeds, fails         testrabinmiller(3045000031l); // succeeds, fails         testrabinmiller(4000000007l); // fails         testrabinmiller(4194304903l); // fails         testrabinmiller(4294967291l); // fails         testrabinmiller(4294967311l); // fails     }      public static void testrabinmiller(long n)     {         var factors = buggycode.rabinmiller.factor(n);         var expectedisprime = factors.count() == 1 && n >= 2;         var expectedwords = expectedisprime ? "is prime.  " : "is not prime.";         var actualisprime = buggycode.rabinmiller.isprime(n,20);         var actualwords = actualisprime ? "is prime.  " : "is not prime.";         var results = actualisprime == expectedisprime ? "succeeded." : "failed.   ";         console.writeline(string.format("test of rabinmiller {0} says {1} {2} in reality, number {1} {3}", results, n, actualwords, expectedwords));     } }  namespace buggycode {      /// <summary>     /// test if number prime using rabin-miller primality test.     /// </summary>     public class rabinmiller     {         private static hashset<long> knownprimes = new hashset<long>()         {             2, 3, 5, 7, 11, 13, 17, 19, 23, 29,              31, 37, 41, 43, 47, 53, 59, 61, 67, 71,              73, 79, 83, 89, 97, 101, 103, 107, 109, 113,              127, 131, 137, 139, 149, 151, 157, 163, 167, 173,              179, 181, 191, 193, 197, 199, 211, 223, 227, 229,              233, 239, 241, 251, 257, 263, 269, 271, 277, 281,              283, 293, 307, 311, 313, 317, 331, 337, 347, 349,              353, 359, 367, 373, 379, 383, 389, 397, 401, 409,              419, 421, 431, 433, 439, 443, 449, 457, 461, 463,              467, 479, 487, 491, 499, 503, 509, 521, 523, 541,              547, 557, 563, 569, 571, 577, 587, 593, 599, 601,              607, 613, 617, 619, 631, 641, 643, 647, 653, 659,              661, 673, 677, 683, 691, 701, 709, 719, 727, 733,              739, 743, 751, 757, 761, 769, 773, 787, 797, 809,              811, 821, 823, 827, 829, 839, 853, 857, 859, 863,              877, 881, 883, 887, 907, 911, 919, 929, 937, 941,              947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013,              1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069,              1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151,              1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223,              1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291,              1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373,              1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,              1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511,              1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583,              1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657,              1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,              1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811,              1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889,              1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987,              1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053,              2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129,              2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213,              2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287,              2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,              2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423,              2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531,              2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617,              2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687,              2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741,              2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819,              2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903,              2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,              3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079,              3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181,              3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257,              3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,              3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413,              3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511,              3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571,              3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643,              3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727,              3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821,              3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907,              3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989,              4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057,              4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139,              4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231,              4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,              4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409,              4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493,              4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583,              4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,              4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751,              4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831,              4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937,              4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003,              5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087,              5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179,              5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279,              5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387,              5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443,              5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521,              5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639,              5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693,              5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791,              5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857,              5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939,              5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053,              6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133,              6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221,              6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301,              6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367,              6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473,              6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571,              6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673,              6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761,              6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833,              6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917,              6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997,              7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103,              7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207,             7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297,              7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411,              7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499,              7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561,              7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643,              7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723,              7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829,              7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919         };          private static long maxknownprime { get; set; }          static rabinmiller()         {             maxknownprime = knownprimes.max ();         }          /// <summary>         /// deterministic rabin-miller test, these best bases numbers below 2^64.         ///          /// see http://miller-rabin.appspot.com/         /// </summary>         private static long[] bestrabinmillerbases = new long[] { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 };          /// <summary>         /// smallest prime factor small numbers.         /// </summary>         private static long[] factorsforsmallnumbers = new long[] { 0, 1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2 };           /// <summary>         /// rabin-miller primality test.         ///          /// error rate of false results (1/4)^k.         /// </summary>         /// <param name="n">number test primality.</param>         /// <param name="k">number of different bases test.          /// higher number, more accurate test , longer running time.</param>         /// <returns><c>true</c> if n prime; otherwise, <c>false</c>.         /// note: 0 , 1 not considered prime.         /// </returns>         public static bool isprime(long n, int k)         {             if(n < 2)             {                 return false; // 0 , 1 not prime.             }              // speedup low values improves accuracy.             if (n <= maxknownprime)                 return knownprimes.contains (n);              foreach(var knownprime in knownprimes)             {                 if (n % knownprime == 0) return false;               }              var s = n - 1l;             while((s & 1l) == 0l)             {                 s >>= 1;             }             random r = new random();             (int = 0; < k; i++)             {                 long a;                 if (i < bestrabinmillerbases.length)                     = bestrabinmillerbases [i];                 else // random choice of base.                     = (long)(r.nextdouble() * (n - 1l)) + 1l;                 var temp = s;                 var mod = modulopower(a, temp, n);                 while(temp != n - 1l && mod != 1l && mod != n - 1l)                 {                     mod = russianpeasant(mod, mod, n);                     temp = temp << 1;                 }                 if(mod != n - 1l && (temp & 1l) == 0l)                 {                     return false;                 }             }             return true;         }          public static bool isprime(long n)          {             var k = 1;             var temp = n;             while (temp > 0l)              {                 temp /= 10l;                 k++;             }             k = math.max (5, k);             return isprime (n, k);         }          /// <summary>         /// return a^b mod n guard against overflow.         ///          /// use repeated squarings reduce number of operations.         /// special case: assume 0 ^ 0 = 1 consistenct math.pow.         ///          /// see https://helloacm.com/compute-powermod-abn/         /// </summary>         /// <param name="a">base exponentiated.</param>         /// <param name="b">the exponent.</param>         /// <param name="n">modulus.</param>         /// <returns>a^b mod n.</returns>         public static long modulopower(long a, long b, long n)         {             // return (a^b)%n -> simple calculation overflow             // example: a^19, there 5 squarings, 2 multipications , 7 modulos, instead of 18 multiplications , eighteen modulos             //     a^19 -> (a^2)^9 * -> (((a^2)^2)^4 * (a^2)) * -> ((((a^2)^2)^2)^2 * (a^2)) *             if (b == 0l) return 1l;             if (a == 0l) return 0l;             if (b == 1l) return % n;             var r = modulopower (a, b >> 1, n);             r = russianpeasant(r, r, n);             if ((b & 1l) == 1l)                 r = russianpeasant(r, a, n);             return r;         }          /// <summary>         /// russian peasant multiplication of a*b mod c, avoids overflow.         /// </summary>         /// <param name="a">first multiplicand.</param>         /// <param name="b">second multiplicand.</param>         /// <param name="c">modulus.</param>         /// <returns>a * b mod c</returns>         public static long russianpeasant(long a, long b, long c)         {             const long _2_32 = 1l << 32;             = math.abs (a);             b = math.abs (b);             if (a < _2_32 && b < _2_32)                 return (a * b % c); // no possibility of overflow.             if (c < _2_32)                 return (a % c) * (b % c) % c;             long ret = 0;             while(b != 0) {                 if((b&1l) != 0l) {                     ret += a;                     ret %= c;                 }                 *= 2;                 %= c;                 b /= 2;             }             return ret;         }            /// <summary>         /// slow, exhaustive simple method of finding prime factors, useful testing against more complex methods.         ///          /// speedup table of known primes.         /// </summary>         /// <param name="n">the number factored.</param>         /// <returns>prime factors of n, sorted frmo low high.</returns>         public static list<long> factor(long n)          {             var factors = new list<long> ();             var lowfactor = 2;             var factorfound = true;             while (factorfound)              {                 if (n <= maxknownprime && knownprimes.contains (n))                     break;                  factorfound = false;                 var maxfactor = (long) math.sqrt (n);                 (var fac = lowfactor; fac <= maxfactor; fac++)                  {                     if (n % fac == 0)                      {                         factors.add (fac);                         n /= fac;                         lowfactor = fac;                         factorfound = true;                         break;                     }                 }             }             factors.add (n);             return factors;         }     }  } 

finally found problem: russianpeasant. did not test every edge case. overflow limit should have been 2^31, not 2^32, account sign bit. here corrected method:

    public static long russianpeasant(long a, long b, long c)     {         const long overflow_limit = 1l << 31;         = math.abs (a);         b = math.abs (b);         if (a < overflow_limit && b < overflow_limit)             return (a * b % c); // no possibility of overflow.         if (c < overflow_limit)             return (a % c) * (b % c) % c;         long ret = 0;         while(b != 0) {             if((b&1l) != 0l) {                 ret += a;                 ret %= c;             }             *= 2;             %= c;             b /= 2;         }         return ret;     } 

Comments

Popular posts from this blog

c# - How Configure Devart dotConnect for SQLite Code First? -

c++ - Clear the memory after returning a vector in a function -

erlang - Saving a digraph to mnesia is hindered because of its side-effects -