math - Least square method in python -
i have 2 lists of data, 1 x values , other corresponding y values. how can find best fit? i've tried messing scipy.optimize.leastsq
can't seem right.
any appreciated
i think simpler use numpy.polyfit
, performs least squares polynomial fit. simple snippet:
import numpy np x = np.array([0,1,2,3,4,5]) y = np.array([2.1, 2.9, 4.15, 4.98, 5.5, 6]) z = np.polyfit(x, y, 1) p = np.poly1d(z) #plotting import matplotlib.pyplot plt xp = np.linspace(-1, 6, 100) plt.plot(x, y, '.', xp, p(xp)) plt.show()
Comments
Post a Comment